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Ã Official Website

Ä http://dpac.ece.drexel.edu/current-research-projects/sigil/

Ã Contact: michael.d.lui@drexel.edu

Ã Related Publications
Ä òPlatform-independent Analysis of Function-level Communication in Workloadsó, 

Siddharth Nilakantan and Mark Hempstead, IISWC 2013

Ä òMetrics for Early-Stage Modeling of Many-Accelerator Architecturesó, 

Siddharth Nilakantan, Steven Battle and Mark Hempstead, CAL July-Dec 2012

http://dpac.ece.drexel.edu/current-research-projects/sigil/
mailto:michael.d.lui@drexel.edu


Getting Sigil
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Ã Available open source

Ägit clone https:// github.com/snilakan/Sigil

ÄDocumentation included

Ã Tested and validated in Linux

ÄOfficially tested distros: CentOS6, Ubuntu 12.04 LTS, 

Ubuntu 14.04 LTS

ÄSupported by any system supported by Valgrind

(3.10.1)

https://github.com/snilakan/Sigil


Outline
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ÃAccelerator Selection Problem
ÄExample

Ã Sigil Overview

Ã Sigil Methodology for Accelerator Selection

Ã Partitioning Example

Ã Building and Running Sigil



Motivational Applications

5

Ã Pipelinedparallel apps typically chosen for HW acceleration



What is accelerator selection?
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Ã Which functions to accelerate?
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Ã Which functions to accelerate?

ÄWhat are limiting factors for selection?
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Ã Which functions to accelerate?

ÄWhat are limiting factors for selection?



Accelerator selection
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Platform-independent metrics
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Ã Accelerator time and communication time are 

implementation-dependent!

Ä Large design space for implementations

Ã Early stage design approach: Capture platform-

independent metrics as proxy

Ä Accelerator time Ą Compute operations

Ä Communication Time Ą I/O set of bytes for each function



Capturing Input/OutputSet
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Ã Input/Outputset: NOTall memory reads and writes, only unique 
ones

Ã Biggest challenge: Measuring uniquecommunication

I/O bytes

Compute 

Rd 

Addr

Function A Function B

Rd 

Addr

Compute

Wr

Addr

Compute 

Bytes

added 

to I/O 

set

Bytes

marked 

as 

reuse

A B



Enter Sigil
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Ã Novelty:Sigil measures these metrics *automatically*

Ä Classifying communication (unique and total bytes)

Ä Compute operations for each function

Ä Produces control data flow graph (CDFG) representations

Ã Revisit the Q: Which functions to accelerate?

ÄApply HW/SW partitioning algorithm to graphs!

ÄGoals of algorithm

ÂMinimize uniquecommunication

ÂMaximizing coveragein HW



Outline
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Ã Accelerator selection problem

ÃSigil Overview

Ã Sigil Methodology for Accelerator Selection

Ã Partitioning Example

Ã Building and Running Sigil



Sigil Implementation
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Ã Implemented into Callgrind

Ã Works on binary, no source changes

Ã Can be implemented on any framework. Requires

Ä Functions

Ä Load/Store addresses

Å Cachesimulation

Å Branchprediction

Å Controldata flow graph

Å Uniqueand localcommunicationcosts

and edges

Å Dynamicbinary instrumentation

Å VEXIRgeneration



Sigil - Binary Instrumentation
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Ã Why Valgrind?

ÄVEX IR provides 

ÂAbstract compute

ÂAbstract load/store

ÂInspect every byte

ÂMemory addresses and widths

ÄCallgrindprovides 

Âfunction calls, returns, et al

ÄMulti-platform support

ÂMature Linux support



Tracking unique communication
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Tracking unique communication
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Tracking unique communication
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Tracking unique communication
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Tracking unique communication
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Inside Shadow Memory
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Inside Shadow Memory
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Inside Shadow Memory 
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Ã Challenges & Considerations

ÄRedesigning shadow memory

ÂNeed to track more state than memcheck

ÄMemcheck

Â1-bit addressable

Â1-bit valid

Â1-void* LIVE heap locations

ÂSome alignment state

ÂHeuristic algorithms developed over time



Inside Shadow Memory 
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Ã Challenges & Considerations

ÄRedesigning shadow memory

ÂNeed to track more state than memcheck

ÄSigil C B
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Inside Shadow Memory 
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Ã Challenges & Considerations

ÄRedesigning shadow memory

ÂNeed to track more state than memcheck

ÄSigil resources

Âð2GB of user space memory Ą 34GB minimum!

Â+Only need to run once



Outline
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Ã Accelerator selection problem

Ã Sigil Overview

ÃSigil Methodology for Accelerator 
Selection
Ä Control Data flow graphs

Ä Partitioning process

Ã Partitioning Example

Ã Building and Running Sigil



Control Data Flow graphs
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Ã Function calltreesé.

ÄHierarchical representation of functions in application

ÄObtained via Callgrind

main

A B

C ED1 D2



Control Data Flow graphs
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Ã Function calltreesannotated with unique

communication flow

ÄObtained via Sigil
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Control Data Flow graphs
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Ã Function calltreesannotated with unique
communication flow

ÄAdd computation costs in as well

ÄAlso obtained via Sigil
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Platform-independent metrics
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Ã Accelerator time and communication time are 

implementation-dependent!

Ä Large design space for implementations

Ã Early stage design approach: Capture platform-

independent metrics as proxy

Ä Accelerator time Ą Compute operations

Ä Communication Time Ą I/O set of bytes for each function



Accelerator selection
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HW/SW partitioning process
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Ã How to pick accelerator candidates in hierarchical 

CDFG?
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HW/SW partitioning process
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Ã How to pick accelerator candidates? 

ÄLeaf nodes are self contained ðNatural candidates

ÂIf coverage of work too low?
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HW/SW partitioning process
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Ã How to pick accelerator candidates? 

ÄLeaf nodes are self contained ðNatural candidates

ÄNon-leaf nodes? Includefunctionality of sub-calltree
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Calculate inclusive costs
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Ã Non-leaf nodes: Merge sub-calltree

Ä Inclusive computation costs ðAdd up operations

Ä Inclusive communication costs ðEdges crossing the box
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Outline
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Ã Accelerator selection problem

Ã Sigil Overview

Ã Sigil methodology for accelerator selection

ÃPartitioning examples
Ä In-depth look: 456.Hmmer

ÄResults: Multiple benchmarks

Ã Building and Running Sigil



Partitioning algorithm
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Ã Employ any partitioning algorithm

ÄExisting algorithms

ÂIntuitive: Computation to Communication ratio

ÂState-of-the-art: Simulated Annealing, Genetic algorithms

ÄWe use a demonstrativealgorithm utilizing:

Âsoftware time ðfrom Callgrind

Âcommunication time ðfrom Sigil

Âcompute time ðfrom Sigil

ÄDoes not indicate amenability of functions

ÂHLS tools show amenability



Partitioning example: Spec 456.Hmmer
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main

Random 

Seq.

FChoose

Hmm

caliber

Gauss 

Random

Digitize 

Seq.

P7

Viterbi

Other 

functions

Ã After partitioning

ÄCall edges shown

ÄCommunication edges 
not shown

ÄCandidates in box

Ã Assumptions

ÄFor SW time ð
2.5GHz CPU

ÄFor Comm. Time ð
16GB/s transfer rate



Partitioning example: Spec 456.Hmmer
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main
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Ops 4.7%
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Ã Rank statistics

ÄS/W, Flops/Iopsand 

Communication bytes 

coverage %
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Partitioning Results - PARSEC
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Source: [1] C. Bieniaet al. òThe PARSEC Benchmark Suite: Characterization and Architectural Implicationsó, Princeton Technical Report

Rank Blackscholes Freqmine Dedup

1 String to float sort sha1_block_data_order

2 ieee754_exp FP_Array_scan2* sha1_block_data_order

3 ieee754_expf sort compress2*

4 ieee754_logf FP_Array_scan2* write_file*

Functions from demonstrativepartitioning for PARSEC benchmarks

Ã ieee_754/ mulðIEEE òmathó library functions

Ã sha1_block_data_order ðcore of SHA1 calculation

Ã FP_Array_scan2 ðBuilds òprefix-treeó for frequent pattern mining [1]

* Ą merged function



Partitioning Results - PARSEC
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Ã S/W Coverage with accelerator candidates



Outline
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Ã Accelerator selection problem

Ã Sigil Overview

Ã Sigil methodology for accelerator selection

Ã Partitioning examples

ÃBuilding and Running Sigil



Getting Sigil
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Ã Available open source

Ägit clone https:// github.com/snilakan/Sigil

ÄDocumentation included

Ã Tested and validated in Linux

ÄOfficially tested distros: CentOS6, Ubuntu 12.04 LTS, 

Ubuntu 14.04 LTS

ÄSupported by any system supported by Valgrind

(3.10.1)

https://github.com/snilakan/Sigil


Building Sigil
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Ã Automated script

ÄChecks dependencies and builds Valgrindwith 
Sigil/Callgrind

ÄConfigures post processing scripts

Ã Manual build process

ÄAutotoolsbuild process ðbasically building Valgrind

Â$ ./autogen.sh

Â$ ./configure

Â$ make

ÄSmall path modifications in post processing scripts

ÂSee documentation



Running Sigil
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Ã Compile user program with debug 
flags

Ã Generate CDFGs 
Ä $ ./run_sigil.sh my_binary

ÄOutputs sigil.totals.out-#
ÂThread #

Ã Partitioning the graph

Ä Post-processing not part of Sigil
Ä $ ./aggregate_costs.py ïhelp

ÄOur example partitioning algorithm

ÄCan plug in your own partitioning 
algorithm!



Running Sigil - Caveats
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Ã Before we beginé
Ã $ ./run_sigil.sh 

Ä Just a wrapper for typical usage of Sigil

ÄMay have to tweak built-in options
Âe.g. --separate-callers=# 

ÂEssentially specifies max nested function calls

ÂCallgrindoption

Ã Bounded by (Val/Call)grindõs abilities

ÄUsually memory allocation problems, if any at all

Ã Now, donõt be a stranger!
ÄPlease contactus with issues or suggestions!



Sigil Output
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Ã Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

Ã étop of file



Sigil Output
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Ã Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

Ã émeanwhile way belowé



Sigil Output

53

Ã Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

Ä Interesting, but not very clear on its own

Ã Gives us:

Ä Communication edges

Ä Classified communication counts

Ä Compute counts

Ä Some tool usage stats



Post Processing
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ÃLetõs do something with this data!

Ã Partition call-tree (from Callgrind) with

communication and computation costs (from Sigil) 

ÄCreate call-tree (with Callgrind)
Â $ vg-in-place -- tool= callgrind -- cache-sim=yes --branch-sim=yes my_binary

ÄRead in the data and make partitioning choices



Post Processing
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Remember me?



Post Processing
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ÃLetõs do something with this data!

Ã Partition call-tree (from Callgrind) with
communication and computation costs (from Sigil) 

ÄCreate call-tree (with Callgrind)
Â $ vg-in-place -- tool= callgrind -- cache-sim=yes --branch-sim=yes my_binary

ÄRead in the data and make partitioning choices

ÂOur demonstrative partitioning script is included

ÂExample use:
Â $ ./aggregate_costs_gran.py ê/sigil.totals.out-1 -- trim-tree -- cg-file=ê/callgrind_output_file

--gran-mode=metric > my_postprocessed_workload.txt



Post Processing
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ÃLetõs do something with this data!



Post Processing
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ÃLetõs do something with this data!

Ãéand we finally have our merged, leaf node 

candidates, from our demonstrative algorithm!



Looking forward
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Ã We plan on releasing results from SPEC, PARSEC, 
BioBenchand more

Ã Improving interface and documentation

ÄUnder the hood overhaul

Ã Commonality of functions between applications

ÄArea may be free, design and verification are not

Ã Need more applications!

ÄRun Sigil on your workload and tell us what you find



Wrap Up
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Ã Available 

Ä git clone https://github.com/snilakan/Sigil

Ä http://dpac.ece.drexel.edu/current-research-projects/sigil/

Ã Contact: michael.d.lui@drexel.edu

Ã Demo Later

Ã Related Publications
Ä òPlatform-independent Analysis of Function-level Communication in Workloadsó, Siddharth

Nilakantanand Mark Hempstead, IISWC 2013

Ä òMetrics for Early-Stage Modeling of Many-Accelerator Architecturesó, SiddharthNilakantan, 
Steven Battle and Mark Hempstead, CAL July-Dec 2012

https://github.com/snilakan/Sigil
http://dpac.ece.drexel.edu/current-research-projects/sigil/
mailto:michael.d.lui@drexel.edu
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BACKUP SLIDES



Partitioning steps
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Ã First, use a metric to compare nodes against parents

Ã Merge nodes when parents make better candidates

Ã Second, rank leaf nodes by same metric
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Metric for merging & ranking
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Ã Breakeven-speedup 

ÄMinimum factor of computational acceleration, given 

communication

ÄFor calculation of communication; we can plug in a 

transfer rate

Breakeven-speedup =Aõ

tsw

A

I/P O/P

tcomm:ip:

accel

tcomm:op:

accel


