
1

SIGIL
Classifying Workload Communication

Mike Lui
PhD student - Drexel University

Dr. SiddharthNilakantan
Nvidia

Graduated - Drexel University

Dr. BarisTaskin
Associate Professor- Drexel University

Dr. Mark Hempstead
Associate Professor - Tufts University

Sigil Release

2

Ã Official Website

Ä http://dpac.ece.drexel.edu/current-research-projects/sigil/

Ã Contact: michael.d.lui@drexel.edu

Ã Related Publications
Ä òPlatform-independent Analysis of Function-level Communication in Workloadsó,

Siddharth Nilakantan and Mark Hempstead, IISWC 2013

Ä òMetrics for Early-Stage Modeling of Many-Accelerator Architecturesó,

Siddharth Nilakantan, Steven Battle and Mark Hempstead, CAL July-Dec 2012

http://dpac.ece.drexel.edu/current-research-projects/sigil/
mailto:michael.d.lui@drexel.edu

Getting Sigil

3

Ã Available open source

Ägit clone https:// github.com/snilakan/Sigil

ÄDocumentation included

Ã Tested and validated in Linux

ÄOfficially tested distros: CentOS6, Ubuntu 12.04 LTS,

Ubuntu 14.04 LTS

ÄSupported by any system supported by Valgrind

(3.10.1)

https://github.com/snilakan/Sigil

Outline

4

ÃAccelerator Selection Problem
ÄExample

Ã Sigil Overview

Ã Sigil Methodology for Accelerator Selection

Ã Partitioning Example

Ã Building and Running Sigil

Motivational Applications

5

Ã Pipelinedparallel apps typically chosen for HW acceleration

What is accelerator selection?

6

Ã Which functions to accelerate?

What is accelerator selection?

7

Ã Which functions to accelerate?

ÄWhat are limiting factors for selection?

What is accelerator selection?

8

Ã Which functions to accelerate?

ÄWhat are limiting factors for selection?

What is accelerator selection?

9

Ã Which functions to accelerate?

ÄWhat are limiting factors for selection?

Accelerator selection

10

Time

CPU time Comm. time Accel. time

Accelerator selection

11

Time

CPU time Comm. time Accel. time

Accelerator selection

12

Time

CPU time Comm. time Accel. time

Platform-independent metrics

13

Ã Accelerator time and communication time are

implementation-dependent!

Ä Large design space for implementations

Ã Early stage design approach: Capture platform-

independent metrics as proxy

Ä Accelerator time Ą Compute operations

Ä Communication Time Ą I/O set of bytes for each function

Capturing Input/OutputSet

14

Ã Input/Outputset: NOTall memory reads and writes, only unique
ones

Ã Biggest challenge: Measuring uniquecommunication

I/O bytes

Compute

Rd

Addr

Function A Function B

Rd

Addr

Compute

Wr

Addr

Compute

Bytes

added

to I/O

set

Bytes

marked

as

reuse

A B

Enter Sigil

15

Ã Novelty:Sigil measures these metrics *automatically*

Ä Classifying communication (unique and total bytes)

Ä Compute operations for each function

Ä Produces control data flow graph (CDFG) representations

Ã Revisit the Q: Which functions to accelerate?

ÄApply HW/SW partitioning algorithm to graphs!

ÄGoals of algorithm

ÂMinimize uniquecommunication

ÂMaximizing coveragein HW

Outline

16

Ã Accelerator selection problem

ÃSigil Overview

Ã Sigil Methodology for Accelerator Selection

Ã Partitioning Example

Ã Building and Running Sigil

Sigil Implementation

17

Ã Implemented into Callgrind

Ã Works on binary, no source changes

Ã Can be implemented on any framework. Requires

Ä Functions

Ä Load/Store addresses

Å Cachesimulation

Å Branchprediction

Å Controldata flow graph

Å Uniqueand localcommunicationcosts

and edges

Å Dynamicbinary instrumentation

Å VEXIRgeneration

Sigil - Binary Instrumentation

18

Ã Why Valgrind?

ÄVEX IR provides

ÂAbstract compute

ÂAbstract load/store

ÂInspect every byte

ÂMemory addresses and widths

ÄCallgrindprovides

Âfunction calls, returns, et al

ÄMulti-platform support

ÂMature Linux support

Tracking unique communication

19

Tracking unique communication

20

Write

Addr. 1

Read

Addr. 1

FunctionA Function B

Monitor

Shadow

Memory

1

Tracking unique communication

21

Write

Addr. 1

Read

Addr. 1

FunctionA Function B

Monitor

Shadow

Memory
Update

last writer

1

Tracking unique communication

22

Write

Addr. 1

Read

Addr. 1

FunctionA Function B

Monitor

Shadow

Memory

1

2

Tracking unique communication

23

Write

Addr. 1

Read

Addr. 1

FunctionA Function B

Monitor

Shadow

Memory

1

2

3
Last

Writer

Update

last reader

Tracking unique communication

24

Write

Addr. 1

Read

Addr. 1

FunctionA Function B

Monitor

Shadow

Memory

1

2

3

Func. B

Data

store

4Unique/non

-unique

bytes

Inside Shadow Memory

25

Shadow Obj

ò

ò

Secondary

Maps

Addr[15:0]
Shadow Obj

ò

ò

0 0 é.

Primary Map

Addr[34:16]

LastWriter = FuncA

Last Reader = None

Last Reader Call =0

ST Addr, Registerin Function A

.

.

LD Register, Addr in Function B

A B

Inside Shadow Memory

26

Shadow Obj

ò

ò

Secondary

Maps

Addr[15:0]
Shadow Obj

ò

ò

0 0 é.

Primary Map

Addr[34:16]

LastWriter = FuncA

Last Reader = FuncB

Last Reader Call =1

26

ST Addr, Registerin Function A

.

.

LD Register, Addr in Function B

A B

Inside Shadow Memory

27

Ã Challenges & Considerations

ÄRedesigning shadow memory

ÂNeed to track more state than memcheck

ÄMemcheck

Â1-bit addressable

Â1-bit valid

Â1-void* LIVE heap locations

ÂSome alignment state

ÂHeuristic algorithms developed over time

Inside Shadow Memory

28

Ã Challenges & Considerations

ÄRedesigning shadow memory

ÂNeed to track more state than memcheck

ÄSigil C B
B

_

A
D

E

A

A

ZZ

ZZ

Inside Shadow Memory

29

Ã Challenges & Considerations

ÄRedesigning shadow memory

ÂNeed to track more state than memcheck

ÄSigil resources

Âð2GB of user space memory Ą 34GB minimum!

Â+Only need to run once

Outline

30

Ã Accelerator selection problem

Ã Sigil Overview

ÃSigil Methodology for Accelerator
Selection
Ä Control Data flow graphs

Ä Partitioning process

Ã Partitioning Example

Ã Building and Running Sigil

Control Data Flow graphs

31

Ã Function calltreesé.

ÄHierarchical representation of functions in application

ÄObtained via Callgrind

main

A B

C ED1 D2

Control Data Flow graphs

32

Ã Function calltreesannotated with unique

communication flow

ÄObtained via Sigil

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

Control Data Flow graphs

33

Ã Function calltreesannotated with unique
communication flow

ÄAdd computation costs in as well

ÄAlso obtained via Sigil

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

700

400 200

50 300 50 50

Platform-independent metrics

34

Ã Accelerator time and communication time are

implementation-dependent!

Ä Large design space for implementations

Ã Early stage design approach: Capture platform-

independent metrics as proxy

Ä Accelerator time Ą Compute operations

Ä Communication Time Ą I/O set of bytes for each function

Accelerator selection

35

Time

CPU time Comm. time Accel. time

HW/SW partitioning process

36

Ã How to pick accelerator candidates in hierarchical

CDFG?

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

HW/SW partitioning process

37

Ã How to pick accelerator candidates?

ÄLeaf nodes are self contained ðNatural candidates

ÂIf coverage of work too low?

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

Software

Accelerator

Candidates

HW/SW partitioning process

38

Ã How to pick accelerator candidates?

ÄLeaf nodes are self contained ðNatural candidates

ÄNon-leaf nodes? Includefunctionality of sub-calltree

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

Software

Accelerator

Candidates

Calculate inclusive costs

39

Ã Non-leaf nodes: Merge sub-calltree

Ä Inclusive computation costs ðAdd up operations

Ä Inclusive communication costs ðEdges crossing the box

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

Software

Accelerator

Candidates

Outline

40

Ã Accelerator selection problem

Ã Sigil Overview

Ã Sigil methodology for accelerator selection

ÃPartitioning examples
Ä In-depth look: 456.Hmmer

ÄResults: Multiple benchmarks

Ã Building and Running Sigil

Partitioning algorithm

41

Ã Employ any partitioning algorithm

ÄExisting algorithms

ÂIntuitive: Computation to Communication ratio

ÂState-of-the-art: Simulated Annealing, Genetic algorithms

ÄWe use a demonstrativealgorithm utilizing:

Âsoftware time ðfrom Callgrind

Âcommunication time ðfrom Sigil

Âcompute time ðfrom Sigil

ÄDoes not indicate amenability of functions

ÂHLS tools show amenability

Partitioning example: Spec 456.Hmmer

42

main

Random

Seq.

FChoose

Hmm

caliber

Gauss

Random

Digitize

Seq.

P7

Viterbi

Other

functions

Ã After partitioning

ÄCall edges shown

ÄCommunication edges
not shown

ÄCandidates in box

Ã Assumptions

ÄFor SW time ð
2.5GHz CPU

ÄFor Comm. Time ð
16GB/s transfer rate

Partitioning example: Spec 456.Hmmer

43

main

Random

Seq.

FChoose

Hmm

caliber

Gauss

Random

Digitize

Seq.

P7

Viterbi

Cycles 14%

OPs 10%

Comm. 0.39%

1

4 3 2

Cycles 0.05%

Ops 0.01%

Comm. 1.82%

Cycles 10%

Ops 4.7%

Comm. 49%

Cycles 74%

Ops 83%

Comm. 4.62%

Ã Rank statistics

ÄS/W, Flops/Iopsand

Communication bytes

coverage %

Comm. Ą% Communication cost

of merged function/Total

communicated bytes in program

Other

functions

Partitioning Results - PARSEC

44

Source: [1] C. Bieniaet al. òThe PARSEC Benchmark Suite: Characterization and Architectural Implicationsó, Princeton Technical Report

Rank Blackscholes Freqmine Dedup

1 String to float sort sha1_block_data_order

2 ieee754_exp FP_Array_scan2* sha1_block_data_order

3 ieee754_expf sort compress2*

4 ieee754_logf FP_Array_scan2* write_file*

Functions from demonstrativepartitioning for PARSEC benchmarks

Ã ieee_754/ mulðIEEE òmathó library functions

Ã sha1_block_data_order ðcore of SHA1 calculation

Ã FP_Array_scan2 ðBuilds òprefix-treeó for frequent pattern mining [1]

* Ą merged function

Partitioning Results - PARSEC

45

Ã S/W Coverage with accelerator candidates

Outline

46

Ã Accelerator selection problem

Ã Sigil Overview

Ã Sigil methodology for accelerator selection

Ã Partitioning examples

ÃBuilding and Running Sigil

Getting Sigil

47

Ã Available open source

Ägit clone https:// github.com/snilakan/Sigil

ÄDocumentation included

Ã Tested and validated in Linux

ÄOfficially tested distros: CentOS6, Ubuntu 12.04 LTS,

Ubuntu 14.04 LTS

ÄSupported by any system supported by Valgrind

(3.10.1)

https://github.com/snilakan/Sigil

Building Sigil

48

Ã Automated script

ÄChecks dependencies and builds Valgrindwith
Sigil/Callgrind

ÄConfigures post processing scripts

Ã Manual build process

ÄAutotoolsbuild process ðbasically building Valgrind

Â$./autogen.sh

Â$./configure

Â$ make

ÄSmall path modifications in post processing scripts

ÂSee documentation

Running Sigil

49

Ã Compile user program with debug
flags

Ã Generate CDFGs
Ä $./run_sigil.sh my_binary

ÄOutputs sigil.totals.out-#
ÂThread #

Ã Partitioning the graph

Ä Post-processing not part of Sigil
Ä $./aggregate_costs.py ïhelp

ÄOur example partitioning algorithm

ÄCan plug in your own partitioning
algorithm!

Running Sigil - Caveats

50

Ã Before we beginé
Ã $./run_sigil.sh

Ä Just a wrapper for typical usage of Sigil

ÄMay have to tweak built-in options
Âe.g. --separate-callers=#

ÂEssentially specifies max nested function calls

ÂCallgrindoption

Ã Bounded by (Val/Call)grindõs abilities

ÄUsually memory allocation problems, if any at all

Ã Now, donõt be a stranger!
ÄPlease contactus with issues or suggestions!

Sigil Output

51

Ã Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

Ã étop of file

Sigil Output

52

Ã Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

Ã émeanwhile way belowé

Sigil Output

53

Ã Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

Ä Interesting, but not very clear on its own

Ã Gives us:

Ä Communication edges

Ä Classified communication counts

Ä Compute counts

Ä Some tool usage stats

Post Processing

54

ÃLetõs do something with this data!

Ã Partition call-tree (from Callgrind) with

communication and computation costs (from Sigil)

ÄCreate call-tree (with Callgrind)
Â $ vg-in-place -- tool= callgrind -- cache-sim=yes --branch-sim=yes my_binary

ÄRead in the data and make partitioning choices

Post Processing

55

Remember me?

Post Processing

56

ÃLetõs do something with this data!

Ã Partition call-tree (from Callgrind) with
communication and computation costs (from Sigil)

ÄCreate call-tree (with Callgrind)
Â $ vg-in-place -- tool= callgrind -- cache-sim=yes --branch-sim=yes my_binary

ÄRead in the data and make partitioning choices

ÂOur demonstrative partitioning script is included

ÂExample use:
Â $./aggregate_costs_gran.py ê/sigil.totals.out-1 -- trim-tree -- cg-file=ê/callgrind_output_file

--gran-mode=metric > my_postprocessed_workload.txt

Post Processing

57

ÃLetõs do something with this data!

Post Processing

58

ÃLetõs do something with this data!

Ãéand we finally have our merged, leaf node

candidates, from our demonstrative algorithm!

Looking forward

59

Ã We plan on releasing results from SPEC, PARSEC,
BioBenchand more

Ã Improving interface and documentation

ÄUnder the hood overhaul

Ã Commonality of functions between applications

ÄArea may be free, design and verification are not

Ã Need more applications!

ÄRun Sigil on your workload and tell us what you find

Wrap Up

60

Ã Available

Ä git clone https://github.com/snilakan/Sigil

Ä http://dpac.ece.drexel.edu/current-research-projects/sigil/

Ã Contact: michael.d.lui@drexel.edu

Ã Demo Later

Ã Related Publications
Ä òPlatform-independent Analysis of Function-level Communication in Workloadsó, Siddharth

Nilakantanand Mark Hempstead, IISWC 2013

Ä òMetrics for Early-Stage Modeling of Many-Accelerator Architecturesó, SiddharthNilakantan,
Steven Battle and Mark Hempstead, CAL July-Dec 2012

https://github.com/snilakan/Sigil
http://dpac.ece.drexel.edu/current-research-projects/sigil/
mailto:michael.d.lui@drexel.edu

61

BACKUP SLIDES

Partitioning steps

62

Ã First, use a metric to compare nodes against parents

Ã Merge nodes when parents make better candidates

Ã Second, rank leaf nodes by same metric

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

main

A B

D2 E

12/16

4

12

4
4

16 8

Metric for merging & ranking

63

Ã Breakeven-speedup

ÄMinimum factor of computational acceleration, given

communication

ÄFor calculation of communication; we can plug in a

transfer rate

Breakeven-speedup =Aõ

tsw

A

I/P O/P

tcomm:ip:

accel

tcomm:op:

accel

